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Abstract. Decoherence process in quantum mechanical entangled spin states is formulated and solved on
the basis of a generalized Coleman-Hepp model and a boson detector model. These models are exactly
solved to give reduced density matrices and the von Neumann entropy. Detailed studies are done on
environmental fluctuations which cause decoherence in the correlated entangled states: a single detector
model and two detectors model are examined with the use of analytic solutions and numerical evaluations.

PACS. 03.65.-w Quantum mechanics – 05.30.-d Quantum statistical mechanics

1 Introduction

In a series of papers [1–4], we studied decoherence pro-
cess of quantum systems. This was performed on the ba-
sis of a generalized version [5,6] of Coleman-Hepp (CH)
model [7] and boson detector (BD) model [8]. Our main
interest lies in spin degree of freedom of an incident parti-
cle into a detector which is composed of an array of spins
(CH) or harmonic oscillators (BD). Degree of decoher-
ence manifests itself in expectation values of certain ob-
servables, quasi-probability density and von Neumann en-
tropy. Among others, the degree of decoherence is clearly
seen when dynamical time evolution of the von Neumann
entropy S is determined:

S ≡ −kBTrρ ln ρ (1)

where ρ is the density matrix, kB being the Boltzmann
constant.

Once an eigenvalue problem,

ρ|λj〉 = λj |λj〉, (2)

is solved, we find

S = −kB

∑

j

λj lnλj . (3)

In our previous work [4,9], we were able to solve (2) even
for the detector as well as for the incoming particle en-
abling us to calculate S exactly and found a reciprocity
relation of entropy.
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Thus we could solve the dynamical decoherence pro-
cesses of CH and the BD models completely. In this pa-
per, we further develop the previous theories to include
entangled states which were recognized to be very im-
portant as early as 1935 by Schrödinger [10] and EPR
(Einstein-Podolsky-Rosen) [11], and later by Bell [12].
Moreover, the quantum entanglement has played an im-
portant role in the field of quantum information [13]. The
above mentioned extension will be done in the following
sections.

2 Entanglement in Coleman-Hepp model

This section treats the generalized CH model [1,2,5,6] to
make detailed studies on decoherence process of an entan-
gled state.

2.1 Single detector model

Let us extend CH model to include two particles named A
and B and a detector. Each of the two particles has a spin
of magnitude 1/2 and the two spins are initially assumed
to be in an entangled state. One of the two particles (A)
moves toward the positive direction of x-axis and the other
(B) stays always at the origin while the detector composed
of N spins is placed in a one-dimensional array. The lth
spin in the detector is located at the position xl (l =
1, · · · , N) with an interval d, xl+1 − xl ≡ d. The particle
A moves with a velocity vA and interacts with the spins
at each site of the detector.

The Hamiltonian of this model is given by

H = H0 + PA
+HA

1 (4)
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with the projection operator PA
± = 1/2 ± Iz

A, where Iz
A is

the z-component of A’s spin operator IA and similarly we
define IB.

The first term of equation (4) is the free Hamiltonian,

H0 = HS + HD, (5)
HS = vAPA + �ωAI

z
A + �ωBI

z
B, (6)

HD =
N∑

l=1

�ωlS
z
l (7)

where HS is the Hamiltonian for the particles A and B and
HD for the detector. In equation (6) PA is the momentum
operator for the particle A and ωA, ωB are the angular
frequencies of the spins of A and B: Sl = (Sx

l , S
y
l , S

z
l ) is

the lth spin operator of the detector. In equation (4), the
interaction Hamiltonian between the particle A and the
detector is given by

HA
1 =

1
2

N∑

l=1

�Ωl(XA − xl)

×
(
eiωlXA/vAS−

l + e−iωlXA/vAS+
l

)
(8)

where Ωl(x) represents the interaction strength, XA be-
ing the position operator of the particle A with further
definition of S±

l = Sx
l ± iSy

l .
Using the total Hamiltonian, we can rewrite time evo-

lution operator in a useful form,

e−iHt/� = e−iHt/�(PA
+ + PA

−) (9)

= Dz
A({ωlXA/vA}){e−i(H′

0+H′A
1 )t/�PA

+

+e−iH′
0t/�PA

−}Dz
A({ωlXA/vA})† (10)

= Dz
A({ωlXA/vA})e−iH′

0t/�

×{VA(t)PA
+ + PA

−}Dz
A({ωlXA/vA})† (11)

where

Dz
A({φl}) =

N∏

l=1

Dz
l (φl) (12)

Dz
l (φl) = e−iφlS

z
l (13)

and

H′A
1 =

N∑

l=1

�Ωl(XA − xl)Sx
l , (14)

VA(t) = exp

[
−i

N∑

l=1

ΘA
l (XA; t)Sx

l

]
, (15)

ΘA
l (x; t) =

∫ t

0

dt′Ωl(x+ vAt
′ − xl), (16)

with H′
0 = HS and PA

+ + PA− = 1.
We note that the interaction effect is contained only

in VA(t) term of (11).

An initial density matrix is assumed to be

W (0) = |I〉〈I| ⊗ |Ψ〉〈Ψ | ⊗
N∏

l=1

|z0
l 〉〈z0

l |, (17)

where the spins of the two particles are in a singlet entan-
gled state:

|I〉 =
1√
2

(|+〉A ⊗ |−〉B − |−〉A ⊗ |+〉B) (18)

with Iz
A|±〉A = ± 1

2 |±〉A and Iz
B|±〉B = ± 1

2 |±〉B.
The orbital state of the particles is written as

|Ψ〉 = |ψA〉 ⊗ |ψB〉 (19)

where

|ψA〉 =
∫
dxAψA(xA)|xA〉, (20)

and

|ψB〉 =
∫
dxBψB(xB)|xB〉, (21)

with XA|xA〉 = xA|xA〉.
In equation (17), |z0

l 〉 represents the spin coherent state
at the lth site in the detector where a general spin coherent
state is defined by [14,15]

|z〉 = |z+〉 ⊗ |z−〉 (22)

≡
∣∣∣∣

(
z+
z−

)〉
. (23)

The spin coherent state is a simultaneous eigenstate of two
annihilation operators b+ and b−,

b±|z〉 = z±|z〉. (24)

Using the annihilation and creation operators b± and b†±,
called Schwinger bosons [16], we can express the spin op-
erator S in terms of them:

S± = b†±b∓, (25)

and

Sz =
1
2
(N+ −N−), (26)

with N± = b†±b± having a simultaneous eigenstate given
by |n+, n−〉 = |n+〉 ⊗ |n−〉.

Then, an eigenstate of Sz is found to be:

|S,m) ≡ |n+ = S +m〉 ⊗ |n− = S −m〉, (27)

S being the magnitude of the spin S while m representing
the eigenvalue of Sz.

Then the Bloch state (atomic coherent state) [17,18] is
introduced as a superposition of |S,m) or in an alternative
form represented by

|S; θ, φ〉 = e−iφSz

e−iθSy |S, S). (28)
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These coherent states are related each other through a
relation,

|z0
l 〉 = |z0

l,+〉 ⊗ |z0
l,−〉 (29)

= e−|z0
l |2/2

∞∑

S=0

(z0
l )2S

√
(2S)!

|S; θ0l , φ
0
l 〉 (30)

where

z0
l =



 e−iφ0
l /2 cos θ0

l

2

eiφ0
l /2 sin θ0

l

2



 . (31)

Using equations (11) and (17), we can determine time evo-
lution of the total density matrix exactly:

W (t) =
1
2

∫
dxAdx

′
AψA(xA)ψ∗

A(x′A)|xA + vAt〉〈x′A + vAt|

⊗
∫
dxBdx

′
BψB(xB)ψ∗

B(x′B)|xB〉〈x′B|

⊗
{

(|+〉〈+|)A ⊗ (|−〉〈−|)B

⊗
N∏

l=1

|z0(int)
l (xA, t)〉〈z0(int)

l (x′A, t)|

+(|−〉〈−|)A ⊗ (|+〉〈+|)B

⊗
N∏

l=1

|z0(non)
l (t)〉〈z0(non)

l (t)|

−e−iωIt(|+〉〈−|)A ⊗ (|−〉〈+|)B

⊗
N∏

l=1

|z0(int)
l (xA, t)〉〈z0(non)

l (t)|

−eiωIt(|−〉〈+|)A ⊗ (|+〉〈−|)B

⊗
N∏

l=1

|z0(non)
l (t)〉〈z0(int)

l (x′A, t)|
}

(32)

where

z0(int)
l (xA, t) =





e−iωlt
(
z0

l,+ cos Θl(xA;t)
2

−iz0
l,−e−iωlxA/vA sin Θl(xA;t)

2

)

eiωlt
(
z0

l,− cos Θl(xA;t)
2

−iz0
l,+eiωlxA/vA sin Θl(xA;t)

2

)




,

(33)

and

z0(non)
l (t) =

(
z0

l,+e−iωlt

z0
l,−eiωlt

)
, (34)

with ωI ≡ ωA − ωB.

As stated in the introduction, we are mainly interested
in the spin dynamics and therefore, we eliminate the irrel-
evant variables of the orbital and the detector variables:
This operation is written as TrΨ,D and thus we have

ρAB(t) ≡ TrΨ,DW (t) (35)

=
1
2

{
(|+〉〈+|)A ⊗ (|−〉〈−|)B

+ (|−〉〈−|)A ⊗ (|+〉〈+|)B
−
∫
dxA|ψA(xA)|2 [e−iωItC(N ;xA, t)

×(|+〉〈−|)A ⊗ (|−〉〈+|)B + h.c.]
}

(36)

where

C(N ;xA, t) =
N∏

l=1

e−|z0
l |2 exp

[
|z0

l |2
(

cos
Θl(xA; t)

2

−i sin θ0l cos(φ0
l − ωlxA/vA) sin

Θl(xA; t)
2

)]
. (37)

We can further reduce the expressions (36) and (37) in the
spin coherent state representation to the spin magnitude
S space with the use of the formula [2],

〈z| · |z〉 = e−|z|2
∞∑

S=0

|z|4S

(2S)!
〈S; θ, φ| · |S; θ, φ〉, (38)

to obtain

ρS
AB(t) =

1
2

{
(|+〉〈+|)A ⊗ (|−〉〈−|)B

+(|−〉〈−|)A ⊗ (|+〉〈+|)B
−
∫
dxA|ψA(xA)|2 [e−iωItCS(N ;xA, t)

×(|+〉〈−|)A ⊗ (|−〉〈+|)B + h.c.]
}

(39)

where

CS(N ;xA, t) =
N∏

l=1

(
cos

Θl(xA; t)
2

−i sin θ0l cos(φ0
l − ωlxA/vA) sin

Θl(xA; t)
2

)2Sl

. (40)

Using these results and according to the method of ref-
erence [4], we find the von Neumann entropy S(t) of (3)
with the definition λ1 ≡ λ+, λ2 ≡ λ−:

S(t) = −(λ+ lnλ+ + λ− lnλ−) (41)

where

λ± =
1
2
±
√
|C|2, (42)

C = −1
2
e−iωIt

∫
dxA|ψA(xA)|2CS(N ;xA, t). (43)

These results will be used later.
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2.2 Two detectors model

Next we generalize the previous situation to the case where
both A and B move in opposite directions from the origin
and not only A but also B interact with their respective
detectors. Then the total Hamiltonian is written with ob-
vious new notations:

H = H0 + PA
+HA

1 + PB
+HB

1 (44)

where

H0 = HS + HD, (45)
HS = vAPA + vBPB + �ωAI

z
A + �ωBI

z
B, (46)

HD =
N∑

l=1

�ωlS
z
l +

−N∑

l=−1

�ωlS
z
l , (47)

and

HB
1 =

1
2

−N∑

l=−1

�Ωl(XB − xl)

×
(
eiωlXB/vBS−

l + e−iωlXB/vBS+
l

)
. (48)

Time evolution operator is determined to give

e−iHt/� = Dz
A({ωlXA/vA})Dz

B({ωlXB/vB})e−iH′
0t/�

×{VAB(t)PA
+PB

+ + VA(t)PA
+PB

−

+VB(t)PA
−PB

+ + PA
−PB

−
}

×Dz
B({ωlXB/vB})†Dz

A({ωlXA/vA})† (49)

where VB(t) has a similar expression to equation (15) and

VAB(t) = VA(t)VB(t). (50)

The initial density matrix for this system is of the form

W (0) = |I〉〈I| ⊗ |Ψ〉〈Ψ | ⊗
N∏

l=1

|z0
l 〉〈z0

l | ⊗
−N∏

l=−1

|z0
l 〉〈z0

l |.

(51)

As in Section 2.1, we can get a reduced density matrix for
the spin degree of freedom:

ρAB(t) =
1
2

{
(|+〉〈+|)A ⊗ (|−〉〈−|)B

+(|−〉〈−|)A ⊗ (|+〉〈+|)B
−
∫
dxAdxB|ψA(xA)|2|ψB(xB)|2

× [e−iωItCA(N ;xA, t)CB∗(N ;xB, t)

×(|+〉〈−|)A ⊗ (|−〉〈+|)B + h.c.]
}

(52)

where CA(N ;xA, t) = CS(N ;xA, t) and CB(N ;xB, t) is
the similar quantity with the replacement A → B.

Thus we can obtain S(t) as before, but λ± replaced by

λ± =
1
2
±
√
|CAB|2, (53)

where

CAB = −1
2
e−iωIt

∫
dxAdxB|ψA(xA)|2|ψB(xB)|2

× CA(N ;xA, t)CB∗(N ;xB, t). (54)

These will be used in Section 4.

3 Entanglement in boson detector model

In this section, we treat the BD model [3,8] referring only
to differences from CH model and quote final results. In
this model, the detectors are composed of harmonic oscil-
lators:

HD =
N∑

l=1

�ωla
†
l al +

−N∑

l=−1

�ωla
†
lal, (55)

and

HA
1 =

1
2

N∑

l=1

�Ωl(XA − xl)

×
(
eiωlXA/vAal + e−iωlXA/vAa†l

)
, (56)

HB
1 =

1
2

−N∑

l=−1

�Ωl(XB − xl)

×
(
eiωlXB/vBal + e−iωlXB/vBa†l

)
, (57)

where al and a†l are the annihilation and the creation op-
erators of the detector’s harmonic oscillators, respectively.

Time evolution operator is written in the same form
as equation (49). We have only to replace the operators
Dz

A({φl}) by DA({φl}),

DA({φl}) =
N∏

l=1

Dl(φl), (58)

Dl(φl) = e−iφla
†
l al (59)

and a similar expression for Dz
B({φl}) and VA(t), VB(t) by

VA(t) = exp

[
− i

2

N∑

l=1

ΘA
l (XA; t)(a†l + al)

]
, (60)

and

VB(t) = exp

[
− i

2

−N∑

l=−1

ΘB
l (XB; t)(a†l + al)

]
. (61)
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Furthermore the initial state of the detectors is also re-
placed by usual boson coherent states:

W (0) = |I〉〈I| ⊗ |Ψ〉〈Ψ | ⊗
N∏

l=1

|z0
l 〉〈z0

l | ⊗
−N∏

l=−1

|z0
l 〉〈z0

l |.

(62)

Finally, we have a reduced density matrix of the form:

ρAB(t) =
1
2

{
(|+〉〈+|)A ⊗ (|−〉〈−|)B

+(|−〉〈−|)A ⊗ (|+〉〈+|)B

−
∫
dxAdxB|ψA(xA)|2|ψB(xB)|2

× [e−iωItCA(N ;xA, t)CB∗(N ;xB, t)

×(|+〉〈−|)A ⊗ (|−〉〈+|)B + h.c.]
}

(63)

where

CA(N ;xA, t) =
N∏

l=1

exp
[
− i

2

(
eiωlxA/vAz0

l

+e−iωlxA/vAz0∗
l

)
Θl(xA; t) − 1

8
Θl(xA; t)2

]

(64)

CB(N ;xB, t) =
−N∏

l=−1

exp
[
− i

2

(
eiωlxB/vBz0

l

+e−iωlxB/vBz0∗
l

)
Θl(xB; t) − 1

8
Θl(xB; t)2

]
.

(65)

The corresponding von Neumann entropy is also given
by (3) with the following λ±:

λ± =
1
2
±
√

|CAB|2, (66)

CAB = −1
2
e−iωIt

∫
dxAdxB|ψA(xA)|2|ψB(xB)|2

×CA(N ;xA, t)CB∗(N ;xB, t). (67)

These results will be examined in the next section.

4 Numerical evaluation

In this section we will make explicit evaluation of the an-
alytical results derived in the previous sections. In the fol-
lowing evaluation, we use a Gaussian form of Ωl(x − xl):

Ωl(x − xl) =
Ωld√
2πδ2

e−(x−xl)
2/2δ2

. (68)
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Fig. 1. Time evolution of S(t)/kB for a single detector CH
model as a function of t̂ = vt/d with vA ≡ v. The number of

the detector spins N = 5. Other parameters are given by Ω̂l =
Ωld/v = 0.5 and δ̂ = δ/d = 0.25. The solid line corresponds to
Sl = 5 while the broken line to Sl = 1/2.
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Fig. 2. The same figure as in Figure 1 for a single detector CH
model keeping N = 5 and Sl = 1/2. The solid line for Ω̂l = 5

and the broken line for Ω̂l = 0.5.

For simplicity we set

|ψA(xA)|2 = δ(xA) (69)

and

|ψB(xB)|2 = δ(xB). (70)

And we put vA = v and vB = −v.
In Figure 1 we show S(t) of equation (41) as a function

of time by changing the magnitude of the detector spin
for fixed value of N and the interaction strength which
corresponds to relatively weak interaction. The entropy
makes the stepwise increase when the incoming particle A
passes each detector spin site. When the spin magnitude
becomes large, we find faster decoherence with larger value
of the entropy. Thus, the large value of the spin magnitude
corresponds to a “classical measuring device”.

In Figure 2 we show S(t) of equation (41) by chang-
ing the coupling strength. When the interaction becomes
strong, there occurs frequent exchange effect between
the particles and the detector resulting in the oscillating
behavior.

In Figure 3 we plot the same quantity as a function of
time with equation (54).
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Fig. 3. The entropy S(t)/kB for the two detectors CH model as
a function of time. The conditions are the same as in Figure 1.

0 1 2 3 4 5 6 7

t
�

�vt�d

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

S
�
t

�
�
k
B

Fig. 4. The entropy S(t)/kB for the two detectors CH model as
a function of time. The conditions are the same as in Figure 2.
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Fig. 5. Time evolution of S(t)/kB for the two detectors BD

model with N = 5 and z0
l = 0. The solid line for Ω̂l = 5 and

the broken line for Ω̂l = 0.5.

When we compare the behavior in Figure 3 with that
in Figure 1, we find faster and larger increase in Figure 3.
We used the same parameters in Figures 3 and 1, and
therefore, this difference is due to the presence of the two
detectors: the effect of the two detectors adds to increase
the entropy of the composite A and B system to decohere
the entangled state.

Figure 4 shows the same tendency as in Figure 3: Fig-
ure 4 should be compared with Figure 2. In Figure 5
we show a typical behavior of S(t) obtained from equa-
tion (66). The entropy increase is monotonous compared
with CH model.

5 Discussions and conclusion

We studied decoherence phenomena on the basis of
CH model and the BD model. We found that the ini-
tially entangled state suffers from the environmental fluc-
tuations resulting in disappearance of the off-diagonal el-
ements of the reduced density matrices, (39) and (52) for
CH model and (63) for the BD model.

That is, the key quantity for CH model is CS(N ;xA, t)
of (40):

CS(N ;xA, t) =
N∏

l=1

cl(Sl) (71)

where

cl(Sl) = cos
Θl(xA; t)

2

− i sin θ0l cos(φ0
l − ωlxA/vA) sin

Θl(xA; t)
2

. (72)

From (72) we have

|cl(Sl)| =
(

cos2
Θl(xA; t)

2

+ sin2 θ0l cos2(φ0
l − ωlxA/vA) sin2 Θl(xA; t)

2

)Sl

. (73)

We note that the quantity in the parenthesis of (73) is less
than or equal to unity:

cos2
Θl(xA; t)

2
+ sin2 θ0l cos2(φ0

l − ωlxA/vA) sin2 Θl(xA; t)
2

≤ cos2
Θl(xA; t)

2
+ sin2 Θl(xA; t)

2
= 1 (74)

where equality holds under limited situations.
Thus we have

|cl(Sl)| −→ 0 (75)

and

CS(N ;xA, t) −→ 0 (76)

as Sl → ∞.
We also note the following property of (71) due to (73)

and (74):

CS(N ;xA, t) −→ 0 (N → ∞). (77)

We have thus shown the vanishing of the off-diagonal ele-
ments of (39) and (52) when N and/or Sl become large.

For the BD model, the corresponding quantity which
characterizes the decoherence property is given by (64):

CA(N : xA, t) =
N∏

l=1

cAl (78)
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where

cAl = exp
[
− i

2

(
eiωlxA/vAz0

l

+e−iωlxA/vAz0∗
l

)
Θl(xA; t) − 1

8
Θl(xA; t)2

]
. (79)

From (79) we find that

|cAl | = exp
[
−1

8
Θl(xA; t)2

]
≤ 1. (80)

The equality in (80) holds only when t = 0 and therefore,
we have

CA(N ;xA, t) −→ 0 (N → ∞) (81)

from (78).
In summary, we have shown vanishing of the off-

diagonal elements of the reduced density matrices when
N and/or Sl tend to infinity for CH model and N → ∞
for the BD model: the initially entangled spin states are
decohered in the thermodynamic limit N → ∞ and/or in
the classical measuring apparatus limit Sl → ∞.

These decoherence quantities, CS(N ;xA, t),
CA(N ;xA, t) and CB(N ;xB, t), play an important
role also in von Neumann entropy S(t) through the
eigenvalues λ± of (42), (53) and (66). As shown in the
figures, decoherence of the entangled states reveals itself
through the increasing tendency (sudden, oscillatory, and
stepwise) of S(t). Strictly speaking, decoherence occurs
only when the conditions N → ∞ and/or Sl → ∞ are
satisfied. However, as seen from the figures, we found
decoherence like phenomena even for finite values of N
and Sl.

In conclusion, we have studied dynamical decoherence
processes of the entangled states due to environmental
fluctuations of the detector by exactly solving CH and
the BD models. It is also explicitly shown that even when
only one of the entangled particles is disturbed by the
detector, the other state is largely influenced through the

correlation between A and B. This is shown in the present
work by obtaining the exact analytic results of the entropy
and by explicit numerical evaluations. In our future work,
we will examine other degree of entanglement [19,20] than
the von Neumann entropy used in the present paper.
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